首页 实用范文 综合范文

最新特殊三角函数值知识点范本(6篇)

会员上传 分享

更新时间:2025-02-28 17:10:03 发布时间:24小时内

最新特殊三角函数值知识点范本一

1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180°;已知三角形两个角的度数,会求出第三个角的度数。

2、能力目标:通过讨论争辩、操作、推理等培养学生的思维能力和解决问题的能力;培养学生的空间观念,使学生的创新能力得到发展;使学生初步掌握由特殊到一般的逻辑思辨方法和先猜想后验证的研究问题的方法。

3、情感目标:培养学生的合作精神和探索精神;培养学生运用数学的意识。

掌握三角形的内角和是180°。验证三角形的内角和是180°。

在上学期学生已经掌握了角的分类及度量问题。在本课之前,学生又研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

一、创设情境,激发兴趣

(课件出示:两个三角形争论,大的对小的说,我的内角和比你大。)

(学生小声议论着,争论着。)

师:同学们,你们能不能帮助大三角形和小三角形解决这个问题啊?

生:可以把这两个三角形的内角比一比。

生:它们不是一个角在比较,可怎么比呀?

生:我们先画出一个大三角形,再画一个小三角形。分别量一量这两个三角形三个内角的度数,这样就知道谁的内角和大,谁的内角和小啦。

师:那好,我们今天就来研究“三角形的内角和”。(板书课题。)

【设计意图:通过多媒体出示,引起学生兴趣,使学生想探索大、小三角形的内角和到底谁大?】

二、动手操作,探索新知

1、初步感知。

师让学生分别画出不同形状的三角形。学生用量角器测量三角形三个内角的度数,并做着记录,并统一填表格。(表格略。)

生汇报测量的结果:内角和约等于180°。

师启发学生发现三角形的内角和180°。(师板书:三角形的内角和是180°。)

【设计意图:通过这种方法可以得出准确的结论,也容易被学生理解和接受。可能出现问题:用测量的方法得到的结果不是刚好180°。使学生明白是因为测量存在误差的缘故。】

2、用拼角法验证。

师:刚才同学们发现,三角形的内角和约等于180°,那么到底是不是这样呢?

生:我们手里有一些三角形,可以动手拼一拼。

生:还可以剪一剪。

师:那同学们就开始吧!

(学生动手进行拼、剪、折等方法,检验三角形内角和的度数。)

生:锐角三角形的内角可以拼成一个平角。因为平角是180°,所以锐角三角形的三个内角和是180°。

生:我把一个直角三角形的三个内角剪下来,拼成了一个平角,所以直角三角形的三个内角和也是180°。

生:钝角三角形的内角和也是180°。

(师板书:三角形的内角和是180°。)

【设计意图:使学生明确,因为全面研究了直角三角形、锐角三角形和钝角三角形这三类三角形的内角和,所以可以得出“三角形的内角和等于180°”这一结论。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。】

三、巩固新知,拓展应用

1.出示题目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度数。

2.已知∠1、∠2、∠3是三角形的三个内角,猜一猜下面的三角形各是什么三角形?(图略,分别是锐角、直角、钝角三角形。)学生猜后,教师抽去遮盖的纸,进行验证。

通过以上的练习使学生对三角形内角和的应用有个初步认识,并积累解决问题的经验。

3.师:(出示一个大三角形)它的内角和是多少度?

生:180°。

师:(出示一个很小的三角形)它的内角和是多少度?

生:180°。

师:(把大三角形平均分成两份。指均分后的一个小三角形)它的内角和是多少度?(生有的答90°,有的答180°。)

师:哪个对?为什么?

生:180°对,因为它还是一个三角形。

师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?(这时学生的答案又出现了180°和360°两种。)师:究竟谁对呢?(学生脸上露出疑问。经过一番激烈的讨论探究后,学生开始举手回答。)

生:180°。因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。

生:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。

师:你真聪明。(课件演示。)

四、小结

师:同学们,你们今天学了“三角形的内角和是180°”的新知识,现在能来帮助大、小三角形进行评判了吧?(生答能。)

师:说一说本节课的收获。这节课你掌握了哪些知识?学会了哪些研究问题的方法?

五、探究性作业

求下面几个多边形的内角和。(图形略。)

【设计意图:通过这样的练习,培养学生思维的灵活性、多样性,使不同层次的学生得到不同的发展,体现教学的层次性。】

1、重视动手操作,让学生在探究中收获知识。《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养空间观念和动手操作能力。

2、小组合作学习是新课程倡导的学习方式,有利于培养学生的合作意识、探索能力、团队精神。我们要从平时抓起,在平常的课堂中开展小组合作学习,可以是前后四人为一组,深入探究合作学习的方法和途径。这样学生学习方式的转变才能落到实处,才不会变成某些公开课的摆设

最新特殊三角函数值知识点范本二

在前一段我讲了30度、45度、60度特殊角的三角函数值,它是北师大版九年级数学下册的一节课,在前一节刚讲过正弦、余弦、正切三角函数的定义和求法。现把我对本节课的做法和想法与大家交流一下,希望能得到同行和专家的指点,以期取得更大的进步。

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理。进一步体会三角函数的意义;能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小。

2、发展学生观察、分析、发现的能力;培养学生把实际问题转化为数学问题的能力。

3、积极参与数学活动,对数学产生好奇心。培养学生独立思考问题的习惯。

教学重点:探索特殊锐角三角函数值的过程,进行这些三角函数值的计算并会比较不同锐角三角函数值大小

在引入时我采用创设情境法,“为了测量一棵大树的高度,准备了如下测量工具:(1)含30、60度角的直角三角尺(2)皮尺。请你设计一个方案,来测量一棵大树的高度。这样会增强学生的学习欲望,使学生对本节内容更感兴趣。

1、让学生自主研习,独立探究。

(1)观察一副三角尺,其中有几个锐角?他们分别等于多少度?

(2)sin30度等于多少呢?你是怎样得到的?cos30度呢,tan30度呢?

2、让学生合作学习、生生互动

(1)请同学们完成下表:30°、45°、60°角的三角函数值(表格略)

(2)观察表格中函数值的特点。先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?第二列、第三列呢?

(3)同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况。

3、精讲细评,师生合作(先由学生独立完成)

(1)计算:sin30°+cos45°;sin260°+cos260°—tan45°。

(2)钟表上的钟摆长度为25 cm,当钟摆向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差。(结果精确到0。1 cm)

分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力

4、延伸迁移,形成技能

(1)计算:sin60°—tan45°;cos60°+tan60°;

(2)某商场有一自动扶梯,其倾斜角为30°。高为7 m,扶梯的长度是多少?

讲课后我让学生自主小结本节收获,并给他们提出困惑的时间和机会

在本节课中我感觉学生整体来说收获不小,有百分之八十的学生都会进行计算,只是对这些三角函数值的记忆还有欠缺,课下还需时间加以巩固。课堂中学生积极性也很高,能体会到数学在生活中的应用广泛,学习数学对解决实际生活问题的帮助,体会到学习数学的重要性。

最新特殊三角函数值知识点范本三

〖教学目标〗

◆1、探索两个直角三角形全等的条件.

◆2、掌握两个直角三角形全等的条件(hl).

◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.

〖教学重点与难点〗

◆教学重点:直角三角形全等的判定的方法“hl”.

◆教学难点:直角三角形判定方法的说理过程.

〖教学过程〗

一、 创设情境,引入新课:

教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?

二、 合作学习:

(1) 回顾:判定两个直角三角形全等已经有哪些方法?

(2) 有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。

教师归纳出方法后,要学生注意两点:1“hl”是仅适用于rt△的特殊方法。

(3) 教师引导、学生练习 p47

三、 应用新知,巩固概念

例题讲评

例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。

分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop

小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)

角的内部,到角的两边距离相等的点,在这个角的平分线上。

四、学生练习,巩固提高

练一练:p48 1. 2. p49 3

五、小结回顾,反思提高

(1)本节内容学的是什么?你认为学习本节内容应注意些什么?

(2)学习本节内容你有哪些体会?

(3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)

(4)你现在知道的有关角平分线的知识有哪些?

六、布置作业

最新特殊三角函数值知识点范本四

人教版义务教育课程标准试验教科书数学四年级下册第67页。

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。

学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

1. 使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。

2. 使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。

3. 使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识

最新特殊三角函数值知识点范本五

1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;

2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;

3.通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.

本班学生对前面学过的三角函数基本知识点掌握较好,可以继续进行新授课。

本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.

4.1第一学时

教学活动

活动1

活动2

1、在直角三角形abc中,∠c=90°,a、b、c、∠a、∠b这五个元素之间有哪些等量关系呢?

(1)边角之间关系:sina=_cosa=_tana=_cota=__

(2)三边之间关系:勾股定理_______

(3)锐角之间关系:________。

2、在rt△abc中,∠c=90°,ab=13,ac=12,求∠a的各个三角函数值。

3、自述30°、45°、60°角的正弦、余弦、正切、余切值。

4、在rt△abc中,∠c=90°,已知c=15,∠b=60°,求a.

5、在rt△abc中,∠c=90°,已知∠a=45°,b=3,求c.

你有哪些疑问?小组交流讨论。

生甲:如果不是特殊值,怎样求角的度数呢?

生乙:我想知道已知哪些条件能解出直角三角形?

◆师:你有什么看法?

生乙:从课前预习看,知道了特殊的一边一角也能解,那么两边呢?两角呢?还有三边、三角呢?

◆师:好!这位同学不但提的问题非常好,而且具有非凡的观察力,那么他的意见对不对?这正是这一节我们要来探究和解决的:怎样解直角三角形以及解直角三角形所需的条件。

◆师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的问题了,这节课我们就来学习“解直角三角形”,解决同学们的疑问。

设计意图:数学知识是环环相扣的,课前预习能让学生为接下来的学习作很好的铺垫和自然的过渡。带着他们的疑问来学习解直角三角形,去探索解直角三角形的条件,激发了他们研究的兴趣和探究的激情。

例1、在rt△abc中,∠c=90°,由下列条件解直角三角形:

已知a=5,b=

◆师:(1)题目中已知哪些条件,还要求哪些条件?

(2)请同学们独立思考,自己解决。

(3)小组讨论一下各自的解题思路,在班内交流展示。

▲解(1)利用勾股定理,先求得c值.由a=c,可得∠a=30°,∠b=60°。

(2)由勾股定理求得c后,可利用三角函数tanb=

=,求得∠b=60°,两锐角互余得∠a=30°。

(3)由于知道了两条直角边,可直接利用三角函数求得∠a,得到∠b,再通过函数值求c 。

◆师:通过上面的例子,你们知道“解直角三角形”的含义吗?

学生讨论得出“解直角三角形”的含义(课件展示):“在直角三角形中,由已知元素求出未知元素的'过程,叫做解直角三角形。”

(学生讨论过程中需使其理解三角形中“元素”的内涵,即条件。)

设计意图:让学生初步体会解直角三角形的含义、步骤及解题过程。通过展示他们的思路让他们更好的体会已知直角三角形的两条边能解出直角三角形。

◆师:上面的例子是给了两条边,我们求出了其他元素,解决了同学们的一个疑问。

那么已知直角三角形的一条边和一个角,这个角不是特殊值能不能解出直角三角形呢?以及学习了解直角三角形在实际生活中有什么用处呢?

带着这些疑问结合实际问题我们来学习例2:(课件展示例2涉及的场景--虎门炮台图,让同学们欣赏并思考问题)学习了之后,你就会有很深的体会。

学习例2:(课件展示涉及的场景--虎门炮台图)

例2:

如图,在虎门有东西两炮台a、b相距20xx米,同时发现入侵敌舰c,炮台a测得敌舰c在它的南偏东40°的方向,炮台b测得敌舰c在它的正南方,试求敌舰与两炮台的距离(精确到1米)。

总结(1)由∠dac=40°得∠bac=50°,用∠bac的三角函数求得bc≈2384米,ac≈3111米。

(2)由∠bac的三角函数求得bc≈2384米,再由勾股定理求得ac≈3112米。

学生讨论得出各法,分析比较(课件展示),得出――使用题目中原有的条件,可使结果更精确。

设计意图:(1)转化的数学思想方法的应用,把实际问题转化为数学模型解决

(2)巩固解直角三角形的定义和目标,初步体会解直角三角形的方法――直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数)使学生体会到“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”

交流讨论;归纳总结

◆师:通过对上面例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?(几个学生展示)

学生讨论分析,得出结论。

◆师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?

学生交流讨论归纳(课件展示讨论的条件)

总结:解直角三角形,有下面两种情况:(其中至少有一边)

(1)已知两条边(一直角边一斜边;两直角边)

(2)已知一条边和一个锐角(一直边一锐角;一斜边一锐角)

设计意图:这是这节课的重点,让学生归纳和讨论,能让他们深刻理解解直角三角形的有几种情况,必须满足什么条件能解出直角三角形,给学生展示的平台,增强学生的兴趣及自信心。

1、在rt△abc中,∠c=90°,已知ab=2,∠a=45°,解这个直角三角形。(先画图,后计算)

2、海船以30海里/时的速度向正北方向航行,在a处看灯塔q在海船的北偏东30°处,半小时后航行到b处,发现此时灯塔q与海船的距离最短,求(1)从a处到b处的距离(2)灯塔q到b处的距离。

(画出图形后计算,用根号表示)

设计意图:使学生巩固利用直角三角形的有关知识解决实际问题,考察建立数学模型的能力,转化的数学思想在学习中的应用,提高学生分析问题、解决问题的能力。以及在学习中还存在哪些问题,及时反馈矫正。

让学生自己总结这节课的收获,教师补充、纠正(课件展示)。

1、“解直角三角形”是由直角三角形中已知的元素求出未知元素的过程。

2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。

3、解直角三角形的方法:

(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);

(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切、余切;

(3)已知一个锐角求另一个锐角时,用两锐角互余。

选用关系式归纳为:

已知斜边求直边,正弦余弦很方便;

已知直边求直边,正切余切理当然;

已知两边求一边,勾股定理最方便;

已知两边求一角,函数关系要选好;

已知锐角求锐角,互余关系要记好;

已知直边求斜边,用除还需正余弦,

计算方法要选择,能用乘法不用除。

设计意图:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题。

1、在rt△abc中,∠c=90°,∠a=60°,bc=1,则ab=_____

2、等腰三角形中,腰长为5cm,底边长8cm,则它的底角的正切值是

3、在正方形网格中,的位置如右图所示,则的值为__________

设计意图:(1)是基本应用.(2)是在三角形中的灵活应用.(3)是变形训练.考察学生对知识的认知和应用程度。

最新特殊三角函数值知识点范本六

对偶的作用推荐度:沟通的作用及技巧推荐度:读书的作用优美句子推荐度:老年教育的作用与意义推荐度:窗边的小豆豆读书心得推荐度:相关推荐

汽车三角窗的作用

大家有没有注意到,在汽车上,有一块很特别的车窗,它呈三角形,看上去就与众不同。很多车主以为,它只是简单的装饰。其实,这个三角窗有着很大的作用。下面是小编为大家整理的汽车三角窗的作用,仅供参考,欢迎阅读。

首先,告诉大家一点,什么事只要你去想了,去做了,就不晚,这个知识也包括在内。

我们知道,在a柱附近的三角窗可以增加驾驶员的视野,还可以避免前挡风玻璃倾斜,以及a柱带来的视线盲区,对行车安全起到了一个很大的帮助作用,同时也增加了车内的透光性。

另外,a柱附近的三角窗可以使车窗与玻璃的升级器导轨保持平行,这样玻璃的升级过程就会更加的平稳,玻璃升降时还能分担产生的震动,避免噪音的产生。

现在很多车型都会有三角车窗的设计,不仅在前车有,就连后车也会有。前车的三角窗是为了增加视野,那么后车的三角窗有何作用呢?

当然,这个增加视野也是存在的。如果坐在后排的人因为车窗的设计看不到外面,会感到很沉闷。

以前的mpv车在最后一排都是没有窗户的,所以,车企也注意到了这一点,在设计上,会增加一个这样的.三角形车窗。而且后视镜也是在这三角形的一边上连接的,如果后视镜的位置变化,就会带来影响。

所以,这个三角形车窗的设计,在很多车型上都有体现。三角形还有稳定性作用,相信大家也知道,那可就不要小看了这块三角车窗,它能在稳定性上提高不少。如果发生了碰撞,也能够提高车辆的安全性。

虽然在平时,这块三角窗看上去并不起眼,可它的实际作用却是很大的。车主在平时的行驶过程中,也要给这个三角窗进行保养,如果时间长了,可能会导致氧化,从而导致漏风和产生噪音。

三角窗的面积虽然不大,但在设计和密封性上都有着很高的要求,如果是特殊的车型,是很难找到相同的玻璃,因此,一旦遭到损坏,这里面的维修费可能比普通的车窗玻璃还要贵。

s("content_relate");

【汽车三角窗的作用】相关文章:

窗的遐想散文欣赏01-28

临窗的日子作文03-18

关于窗的900字02-28

窗的随想阅读答案07-16

窗高中作文02-16

窗_1200字02-11

茎的输导作用和贮藏作用课件05-18

窗雪花的剪法步骤图02-26

散文:六月的窗10-06

关于初雪敲窗的诗句11-08

推荐阅读:

  意识形态工作要点(精)(6篇)

  五星红旗你是我的骄傲是什么歌怎么写(二篇)

  2025年专题组织生活会个人剖析检查材料如何写

  最新个人承诺书医保备案(14篇)

  工作不严谨不细致整改措施如何写

  学生清明祭英烈活动方案设计 学生祭奠英烈方案(五篇)

AD位1

相关推荐

员工劳动合同协议书(2024范本)

综合范文

2024最新个人求职自荐信范本

综合范文

2024学生爱国演讲稿范本

演讲稿

学生诚信演讲稿4分钟范本

演讲稿

军训开幕式致辞范本7篇

演讲稿

2024公司规章制度制定范本

综合范文
AD位2

热门图文

AD3