中学学习数学方法总结归纳集锦
中学学习数学方法总结归纳集锦
只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容。以下是小编精心收集整理的中学学习数学方法总结,下面小编就和大家分享,来欣赏一下吧。
中学学习数学方法总结1
老师们发现,新初一出现的最严重的问题之一,是概念理解。很多新初一的孩子喜欢用以前的概念理解数学问题,对新概念有一些排斥,对绕一点弯的概念理解起来有一定困难。
比如,初中引入了平方计算,有的孩子理解不了平方的算法,会把3的平方算成6。
比如,初中引入了负数,也有绝对值和相反数的概念,但是有的孩子分不清绝对值和相反数的概念,如果不能理解题目的要求,就会写错结果。
比如,1-3=1+(-3),减一个数等于加上它的相反数,并且要加括号,或者反过来要去括号,有的孩子不理解这个过程,就会在计算中犯错。
那么概念理解出问题该如何加强呢?
首先,要帮助孩子建立起重视概念理解的意识。因为很多问题的产生,都是理解不到位引起的。
其次,注意孩子理解的情况,是与哪一种他以前学习的概念或者相似概念混淆的,比如把乘法和乘方弄混,要仔细讲解这二者从形式上到计算结构上的差别。帮助孩子建立,看到什么形式要用什么样处理方法的“条件反射”。
比如,初中引入了平方计算,有的孩子理解不了平方的算法,会把3的平方算成6。
比如,初中引入了负数,也有绝对值和相反数的概念,但是有的孩子分不清绝对值和相反数的概念,如果不能理解题目的要求,就会写错结果。
比如,1-3=1+(-3),减一个数等于加上它的相反数,并且要加括号,或者反过来要去括号,有的孩子不理解这个过程,就会在计算中犯错。
再者,因为这个时候孩子还不能很好地自己做总结,所以我们要帮着孩子总结课本上的重要概念,及概念运用的经典案例,发现错误及时纠正,引导孩子及时复习,直到最终在脑海中建立正确的概念。因为刚上初中,新的概念还不多,所以一开始家长能盯得紧一点,孩子进入正轨之后,就能够比较好了。
出现的第二个大问题,来自于习惯。有些习惯在小学养成,小学题目比较简单,还不会有明显的影响,但到了初中,难度逐渐上升以后,这些习惯会有很大危害。
习惯里面又分三个经典问题:解题不爱用草稿纸,不会的时候干瞪眼不翻笔记,以及知识掌握一知半解就比较懒散不记不练了。
小学的知识学习,难度低一些,这些习惯影响不大,不容易被发现。但到了初中,家长们要注意一下,一定要早发现,早纠正。因为早的话,可以为后面的学习提升效率,铺平道路,反之,晚发现会让知识漏洞越来越多,知识体系越庞大反而越脆弱,再补起来就会很棘手。
笔者发现,很多刚上初中的孩子,在解题的时候,习惯不用草稿纸,干盯着题口算答案。这对于小学简单题目时,还可以保持较好的正确率,但是初中推理步骤长了,再瞪眼口算,错误率会大大增加,这个时候,必须要使用草稿纸,并且要告诉孩子为什么要用草稿纸,以及帮助他养成用好草稿纸的习惯。开学的一两个月里,习惯的培养非常重要。
刚上初中,讲解的内容比较简单,笔记记录不多,但这个时候,要有意识地鼓励孩子,去更好的记录笔记。同时,一些记了笔记的孩子,还会发生一个新的问题,就是题目不会做的时候,会干瞪着题想,不知道去笔记上翻例题、公式,然后再解。虽然我们不能让孩子形成不背公式看笔记做题的习惯,但是,我们也希望孩子,在没有老师在身边时,能够形成自己找到学习资料,找到解题办法的意识和能力
中学学习数学方法总结2
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会总结:
冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:
管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。
中学学习数学方法总结3
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理
一元二次方程a_2+b_+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。
中学学习数学方法总结4
小学数学与初中数学存在着差异。小学数学着重培养学生的计算能力,而初中数学则是要培养学生用数学关系进行说理的能力。也就是说,初中数学中有一些开放性的题,还有些一题多解的题。所以对于刚刚升入中学的学生来说会有些不适应,对此,学生们不要心急,这是个思维转变的过程,今后会在老师的指导下,通过不断积累和做题来调整。初一的数学教材中,有许多公式及定理,这些知识光靠死记硬背是不行的,学生应该按照老师指点的方法,或是自己寻找的方法来记忆,在理解的基础上来掌握这些定理和公式,这样不但记得牢而且用得活。
初一学生刚刚接触应用题,会觉得很难。因为应用题中有许多文字表述,学生可能会读不懂,继而找不出数量之间的关系,就很难解出答案。扩大阅读量是解决这个问题的好方法。学生可以通过多读书,多看报来开阔思路、提高阅读能力和理解能力。另外,学生在做题的时候一定要认真,做完后检查一下,养成良好的做题习惯。
恐惧心理也是初一学生在学习数学的过程中遇到的一个共性问题。因为多数的学生在学习的过程中都会遇到困难,在解决难题的过程中,就会产生恐惧心理,久而久之,有的学生见到数学就害怕,不喜欢数学。刘老师认为,兴趣是的老师。有了兴趣,就会喜欢学、愿意学。数学与实际生活联系紧密,所以学生可以试着用数学知识来解决生活中的实际问题,从中培养学习数学的兴趣。在培养兴趣方面,还可以有选择的看一些好的电视节目。比如《三星智力快车》、《科学与探索》以及中央十套的一些节目,都很适合初中阶段的学生学习。同时,还应该养成好的学习规律和生活规律,培养良好的生活习惯。
初一学生的思维比较活跃,所以学生在上课时要“多说,敢说”,说白了,就是要积极回答老师提出的问题,不要害怕自己说错,要把课堂当成自己的家,把同学当成朋友而不是敌人,对于回答错的问题课后要自己总结。
中学学习数学方法总结5
1.主动学习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
2.主动思考
很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。
主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。
靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!
3.善于总结规律
解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:
(1)本题最重要的特点是什么?
(2)解本题用了哪些基本知识与基本图形?
(3)本题你是怎样观察、联想、变换来实现转化的?
(4)解本题用了哪些数学思想、方法?
(5)解本题最关键的一步在那里?
(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?
(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?
把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。
4.拓宽解题思路
数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。
5.必须要有错题本
说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。
错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。
6.“1_”学习法
“1×5”学习法,就是做一道题,要从五个方面思考,这点可以结合前面说到的“总结规律”“拓展思路”。五个方面分别为:
①这道题考查的知识点是什么。
②为什么要这样做。
③我是如何想到的。
④还可以怎样做,有其它方法吗?
⑤一题多变看看它有几种变化的形式buy
千万不要觉得麻烦,学习习惯的培养最难的就是最初的一个月,这就像火箭升空一样,最难的就是点火起飞阶段,一旦养成了良好的数学学习习惯和思维方式,在今后的学习中就会非常的轻松。
7独立完成作业
现在很多学生用一些app来帮助写作业,找个照片就有答案,或者是抄袭其他同学的作业,这可以分两种情况来说,一种是为了图快、求速度,如果经常这样会养成不良的审题习惯,容易走马观花、粗心大意。
还有一种是为了图方便,这会导致同学们养成“怕麻烦”的心理,一旦题目有些难度,自己就开始心烦意乱,思路模糊,因此,大家一定要养成良好的独立完成作业的习惯。