首页 实用范文 综合范文

五年级下册数学的教案

会员上传 分享

更新时间:2024-03-25 18:53:16 发布时间:24小时内

五年级下册数学的教案10篇范文

在数学教学中五年级数学老师应以满腔热情的积极状态,将知识技能传递给学生。经历了数学教学工作,你知道如何写一篇五年级数学教案?你是否在找正准备撰写“五年级下册数学的教案”,下面小编收集了相关的素材,供大家写文参考!

#501574五年级下册数学的教案1

(一)教学目标

1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

3.理解和掌握分数的基本性质,会比较分数的大小。

4.理解公因数与公因数、公倍数与最小公倍数,能找出两个数的公因数与最小公倍数,能比较熟练地进行约分和通分。

5.会进行分数与小数的互化。

(二)教材说明和教学建议

教材说明

1.本单元内容的结构及其地位作用。

本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,公因数与约分,最小公倍数与通分以及分数与小数的互化。

学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。

通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。

这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。

本单元的内容分为六节,各节的内容的编排体系及其内在联系如下图所示。

五下分数的意义和性质

从上面的图示,不难看出六节教材的内容所具有的内在逻辑联系。

首先,第1节分数的意义和第3节分数的基本性质,是整个单元教学内容的主干,也是本单元教学的重点。第2节真分数与假分数是分数意义即分数概念的引申;第4节约分、第5节通分则是分数基本性质的运用。最后一节沟通了分数与小数在表现形式上的相互联系,得出了分数与小数的互化方法。整个单元的内容,大体上显现出由概念到性质,再到方法、技能的递进发展关系。

其次,在第1节里,分数的意义是学习的重点。在前面学习的基础上,这里引入了两个新的概念,即单位“1”与分数单位。至于分数的产生、分数与除法的关系,则是从分数的现实来源和数学内部来源两方面来帮助学生深化对分数的认识。

在第2节里,先通过三道例题,引入真分数、假分数、带分数三个概念,再通过例4,解决把假分数化成带分数或整数的问题。

在第3节里,先通过例1,得出分数基本性质,然后通过例2,在运用的过程中加以巩固。

在第4、5节里,先引入公因数与公因数,公倍数与最小公倍数的概念,再讨论求公因数、最小公倍数的方法,然后在此基础上,引入约分、通分的概念和方法。

显然,在第2、3、4、5节内部,同样显现出由概念到方法的逻辑关系。

2.本单元教材的编写特点。

与原教材相比,本单元教材的主要改进有以下几点。

(1)多侧面地展现了分数的来源。

在小学数学里,认识分数是小学生数概念的一次重要扩展。考虑到分数概念比较重要,又比较抽象,有必要通过揭示产生分数的现实背景,来帮助学生形成分数概念,理解它的含义。

从现实的角度来看,数是用来表示量的。5只兔、5个人,这些量的共同特征,可以用自然数5来表示。也就是说自然数是一个量(兔、人)与另一个作为单位的量(1只兔、1个人)的比。

现实世界中存在的量,除了上面例举的,由一些单位量合成的,可以用自然数表示多少的量之外,还存在着许多可以分割的,无法用自然数表示的量。例如,用一根作为单位长的木棒(米尺)去量一条线段AB的长,量了3次还有一段PB剩余。

五下分数的意义和性质

这时,运用自然数就只能粗略地说,这条线段长3米多一点。要更精确一些,就必须把度量单位等分成更小的单位,来度量余下的那条线段。比如把1米一分为四,则每等份叫做“四分之一”米,记做1/4米。这就引入了形如1/n(n为大于1的自然数)的分数。假如使用度量单位14米去量图中剩下的一条线段PB,量了3次恰巧量尽,那么PB的长就是“3个1/4”,记作3/4米,这样就又引入了形如m/n(n为大于1的自然数,m为自然数)的分数。历,分数正是为了比较精确地测量这类可以分割的量而引入的。

从数学的角度来看,分数的引入是为了解决在整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2÷3=2/3。当然,这种抽象的表示方法也有它的实际意义。例如把2块饼平均分给3个人,每人分得2/3块饼。

在本单元的第1节里,教材首先从历史的角度,从现实生活中等分量的需要出发,生动形象地展示了分数的现实来源。

在引出分数概念之后,教材又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟,有了分数,就能解决整数除法除不尽的矛盾。这实际上是从数学内部发展的角度,揭示了分数的来源。

这就为拓宽学生的认识,加深对分数的理解,提供了较为丰富的教学素材。

(2)约数、倍数的有关知识与分数的相关知识结合起来教学。

我们知道,在小学数学中,约数、倍数的有关知识的学习,主要是为学习分数服务的。但在以往的教材中,两者各自独立成章,学完后,学生还不知道学了公因数、公倍数与公因数、最小公倍数有什么用,只能对一组组整数单纯地练习求它们的公因数或最小公倍数。而且,这些知识集中在一个单元里,概念多,而且抽象,不利于分散难点,逐步消化,也不利于认识的螺旋上升。

现在,把公因数、公因数的内容安排在讨论约分之前教学;把公倍数、最小公倍数的内容安排在引进通分之前学习。从而将两部分知识紧密结合起来,学了就用,既能减少单纯的枯燥练习,节省教学时间,又有利于整除性知识的教学改革。为了配合这一改革,约分与通分不再合成一节,而是公因数、公因数与约分编为一节,公倍数、最小公倍数与通分编为一节。

(3)关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。

在本单元中,无论是公因数与公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学的概念,得出数学的方法。这些数学知识,还有利于培养学生的数学应用意识和解决实际问题的能力。

(4)部分内容作了适当的精简处理或编排调整。

本单元中,比较重要的内容精简处理与编排调整,在前面揭示单元内容结构与联系的图示中,已有所显示。这里,再择要作些说明。

其一,分数大小比较,不在第1节中单列一段,而是充分利用前面学习分数初步认识时打下的基础,把有关内容与通分结合在一起学习。这样既进一步简化了第1节的内容,也有利于发挥学习的正向迁移作用。

其二,删去了原来第2节中把整数或带分数化成假分数的内容。这是因为根据课程标准,今后的分数运算中将不含带分数,所以无须再掌握把整数或带分数化成假分数的技能。考虑到把假分数化成带分数,容易看出这个假分数的大小在哪两个整数之间,从而有利于数感的形成;把能化成整数的假分数化成整数,是化简某些计算结果的需要。所以,把假分数化成带分数或整数的内容,仍然保留,但也作了简化,合在一个例题中予以解决。

教学建议

1.充分利用教材资源,用好直观手段。

如前介绍,本单元教材在加强数学与现实世界的联系上作了不少努力,同时,教材还运用了多种形式的直观图示,数形集合,展现了数学概念的几何意义。从而为教师与学生提供了较为丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。

本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情境,调动学生相关生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图示来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段。

2.及时抽象,在适当的抽象水平上,建构数学概念的意义。

为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如:比较1/3与1/2的大小,有学生回答,不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出1/3可能比1/2大,也可能比1/2小,还可能和1/2相等。造成这种错误认识的主要原因,就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识基础上,要不失时机地引导学生由实例、图示加以概括,建构概念的意义。

3.揭示知识与方法的内在联系,在理解的基础上掌握方法。

在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

4.这部分内容可以用20课时进行教学。

#20_30五年级下册数学的教案2

教学目标:

1、结合具体的长方体和正方体的展开与折叠的情景,经历探究长方体和正方体表面积的过程,能够准确的计算长方体和正方体的表面积。

2、能够认识长方体和正方体,具有初步的立体空间想象能力。

3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。

重点难点:

能够准确的计算长方体和正方体的表面积。

教学方法:

师生共同归纳和推理。

教学准备:

长方体纸盒

教学过程:

一、复习导入

教师让学生拿出长方体的盒子并沿着棱剪开,把长方体展开成6个面并观察这6个面有什么特点?

学生举手回答问题。(长方体的表面积由6个面来组成,每组相对的面的面积相等……)

二、讲授新课

教师出示例题,一个知道长、宽、高的长方体纸盒,如何才能求出它的表面积?

学生利用手中的长方体纸盒为参照,探究如何才能求出长方体的表面积。学生同组之间相互讨论,教师巡视指导每个小组的讨论活动。

教师提问学生如何求长方体的表面积。

学生回答:(分别求出每个面的面积,再加起来。就是长方体的表面积。)

教师让学生把长方体的纸盒展开,看一看长、宽、高有什么关系?

组成长方体表面积的6个面,等于(长×宽+长×高+高×宽)×2=长方体的表面积

教师让学生自己求出长7厘米、宽5厘米、高3厘米的长方体的表面积是多少?

学生列式:(7×5+7×3+5×3)×2

教师让学生思考正方体的表面积如何求?

学生同桌之间进行交流,教师提问学生。(正方体的表面积=边长×边长×6)

三、课堂小结

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

长方体的表面积

长方体的表面积=(长×宽+长×高+高×宽)×2

正方体的表面积=边长×边长×6

#501567五年级下册数学的教案3

教科书第65页例4。

1.通过教学,使学生理解最简分数和约分的意义,掌握约分的方法。

2.培养学生应用所学数学知识解决问题的能力。

归纳、概括出最简分数的概念及约分的方法。

能正确地对分数进行约分。

一、复习导入

1.提问:你能很快找出下面各组数的最大公因数吗?

9和1815和217和94和2420和2811和13

2.提问:你是怎样找出两个数的最大公因数的?求两个数的最大公因数有几种情况?

教师引导学生回顾小结:求两个数的最大公因数时,有两种特殊情况:一种是两个数成倍数关系,较小的数就是两个数的最大公因数;另一种是两个数的公因数只有1,它们的最大公因数就是1。

二、探究新知

1.出示例4:把2430化成分子和分母比较小且分数大小不变的分数。

(1)学生先尝试,引导学生想出多种方法进行约分。

方法一:用分子、分母的公因数,逐次去除分子和分母。

2430=24÷230÷2=12151215=12÷315÷3=45

方法二:用分子、分母的最大公因数,分别去除分子和分母。

2430=24÷630÷6=45

(2)教师:怎样进行约分?

引导学生概括出方法:用分子和分母的最大公因数(1除外)去除。

(3)指出:像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。(板书)

约分时还可以怎样写呢?请同学们自学教科书第65页的例4。试着自己写一写。学生汇报约分的写法,教师板书。

2.教师:45的分子和分母有什么关系?(学生观察后汇报:45的分子和分母只有公因数1。)

教师指出:分子和分母只有公因数1,这样的分数叫做最简分数。(强调约分时,要约成最简分数)

三、课堂小结

教师引导学生小结:本节课我们学习了什么叫最简分数和怎样约分。在约分时,可以用分子和分母的公因数分别去除分子和分母,直到约成最简分数为止;也可以直接用分子和分母的最大公因数去除分数的分子和分母,得到最简分数。用第二种方法比较简便,但是,必须要能看出分子和分母的最大公因数。

约分

2430=24÷230÷2=12151215=12÷315÷3=452430=24÷630÷6=45

把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

分子和分母只有公因数1,这样的分数叫做最简分数。

本节课的内容是约分,它是分数的基本性质的直接运用,与公因数、最大公因数等概念密切相关。在本课教学中,我关注学生探究活动的空间,体现“以学生发展为本”的原则,积极调动学生的学习情感,让学生在解决问题、比较计算结果的过程中认识最简分数,理解最简分数的含义,引导他们在活动中通过观察、判断、比较、归纳等方式,经历数学概念的形成过程。

#503895五年级下册数学的教案4

教学目标

1、对一些事件的可能性用一定(肯定)、可能、不可能作出判断。

2、通过小组活动并结合已有的经验对一些事件的可能性用一定(肯定)、可能、不可能作出判断叙述出来,并能简单地说明理由。

3、让学生在同伴的合作和交流中获得良好的情感体验,感受到数学与生活的密切联系。

教学重难点

教学重难点:能对一些事件的可能性作出正确判断。

教学工具

ppt课件

教学过程

(一)创设情景,激趣导入

师:播放课件

师:同学们,六一儿童节马上就要到了,为了庆祝六一,老师决定在咱班举

办六一儿童晚会,你想表演什么节目呢?

生:唱歌、跳舞……

师:如果老师给你规定三个节目:唱歌、跳舞、朗诵,那你想表演什么节目呢?

生:唱歌、跳舞、朗诵……

师:如果用抽签的方式来确定自己要表演的节目,你还能确定自己要表演的节目吗?

生:不能。

(二)探求新知,合作学习

师:盒子里有三张卡片,上面分别写着唱歌、跳舞、朗诵,让我们来抽一抽吧!

课件出示:

师:首先,猜一猜你会抽到什么?

生1:可能抽到唱歌

生2:可能抽到跳舞 (多找生说一说)

生3:可能抽到朗诵

师:这时我们都是可能抽到什么时候 (板书:可能)

师:好!现在我们就开始进行抽签。

师拿着箱子,指名生去抽签,并读出自己签上写的节目。

生:抽到唱歌

师:唱歌让生(__)抽走了,你还可能抽到唱歌吗?

课件出示:

生:不可能 (板书:不可能)

师:接下来你再抽,会抽到什么呢?

生1:可能抽到跳舞

生2:可能抽到朗诵 (多找生说一说)

师指名让生前去抽签,并读出自己签上写的节目

生:抽到朗诵

师:唱歌和朗诵都被抽走了,只剩下跳舞了

课件出示:

接下来你会抽到什么呢?不可能抽到什么?

生:抽到跳舞,不可能抽到唱歌和朗诵

师:是可能抽到跳舞,还是一定抽到跳舞

生:一定 (板书:一定)

师:我们在什么地方用到过可能、不可能、一定这三个词语?

生:在生活中

师:那么,我们今天就认识了解一下可能性 (板书:可能性)

(三)自主探究,巩固新知

1摸球抽奖

师:大家都抽过奖吗?

生:抽过

师:看,我给大家带来了什么?

生:抽奖箱

师:这里面有三个球,三个球的颜色分别是红、黄、蓝,咱们就真的来一次摸球抽奖。那么请同学们来摸球,摸到哪种颜色的球,就把球和相应的奖品送给你。请同学们利用今天所学知识用数学语言说说你会摸到什么颜色的球。

生1:可能会摸到红色

生2:可能会摸到黄色

生3:可能会摸到蓝色

生4:三个球都有可能摸到

师指名生来摸

生摸出来,集体说黄色

师把黄球和黄色的奖品送给生

师:谁来摸

生:举手

师:指名生并问,你会摸到什么球?

生:可能摸到红色和蓝色的球

师:你会摸到黄色的球吗?

生:不可能

生摸出

师:举起来让大家看一看,什么颜色的球

生齐答蓝色

师:把蓝球和奖品一起送给生

生:谢谢老师

师:不客气,真有礼貌

师:指名生,这次让你摸,你会摸到什么颜色的球?

生:我一定会摸到红球

师:你还能摸到黄球和蓝球吗?

生:不可能

师:该生的奖品下课再给你

2、师:我这里还有几个箱子,从箱子里摸出一个球,结果会怎样?

生:一定是蓝色!

师:请判断

生:正确

师:请坐

师:从箱子里摸出一个球,结果会怎样

生:一定是黄色

师:请判断

生:正确

师:请坐

出示课件,指名生回答

生:可能是红色也可能是蓝色

师:同意吗?

生:同意

师:出示课件,指名生回答

生:可能摸到蓝色、红色、黄色

师:说的真好!

今天我们把四个箱子都放在这里,摸哪一个更好呢?

一定要摸出黄色球!

生:2号箱

师:一定要摸蓝色球!

生:1号箱

师:可能摸到红色球!

生:3号和4号箱

师:为什么?

生:因为3号和4号箱里都有红色的球!

师:不可能摸到红色球!

生:1号和2号箱

师:为什么?

生:因1号和2号箱子里没有红色的球

师:同学们回答的真好!

3、(1)猜一猜,硬币在谁的手中

师:我们做游戏放松一下,这里有一枚硬币,我再找两名同学跟老师一起做游

指名两生

师:在两名同学手中放有一枚硬币,猜一猜放谁手中了?

师:谁能利用今天所学的知识,用数学语言完整的表述一下答案?

生:可能在__手中

师:同意吗?

生:同意

师:现在我们就揭晓答案,让__展开手(空的没有),谁能表述一下答案?

生1:一定在__手中

生2:不可能在__手中

师:回答的真棒!请坐

(2)装球游戏

师:设计要求(每个游戏只能向袋子里放入6个球)

1、2组 设计出“一定”摸出蓝色球的游戏

3、4组 设计出“不可能”摸出红色球的游戏

5、6组 设计出“可能”摸出黄色球的游戏

生:动手操作

师:指名各组生代表上讲台进行作品展示,其他生运用数学语言说说如果摸球,会摸出什么球

师:老师也设计了一个游戏,把不同颜色的跳棋放入了两个盒子里,让大家去摸

出示课件

生:回答

4、小组讨论交流

师:想一想生活中 在什么情况下出现可能?

在什么情况下出现不可能?

又在什么情况下出现一定?

生讨论交流

指名生回答

师:以上几位同学对所学内容理解的非常透彻

师小结:有,不全部是,在不确定的这种情况下是可能;不存在,没有的事叫不可能;100%的事,一点含糊都没有的事是一定。并让生举例子说明

(四)课堂练习,巩固新知

1、闯关活动

第一关 说一说指针可能停在哪种颜色上?

答:可能停在蓝色、粉色、绿色、黄色上

一个正方体,六个面上分别写着数字1-6。掷一次,可能掷出哪些数字?

答:可能掷出1、2、3、4、5、6

第二关

从盒子里摸出一个球,结果会是什么?连一连

第三关 判断下列事件(一定的打√,不可能的打×,可能的打○)

2、听故事,体验生活中的可能性

很久很久以前,在一个古老王国的监狱里关着一位犯人,这个犯人即将被行刑。这个国家有一条非常有趣的法律规定:在每个犯人被执行死刑之前给他一次机会,用抽签来决定自己的命运。在装签的盒子里有两张纸条,一张写着“生”,一张写着“死”。

犯人摸到“生”就释放,摸到“死”就杀头,这两种可能性都有,但是很可惜,这个犯人有一个仇人,这个仇人想要他死掉,偷偷地把“生”这张纸条换成了“死”,结果两张纸条都是“死”,那么,犯人不管摸到哪一张,他的死是可能的还是一定的?临刑前,如果法官让他抽签,你们猜他抽到的是什么?

这个犯人很聪明,当他从好朋友的口中知道了这件事后,想了一夜,终于想出一个好办法,第二天,当他抽到了签,他没有把纸条打开,而是一下子把纸条吞进肚子里,因为剩下的这张纸条是死,法官不知道换纸条的事,根据剩下的是死,所以法官推断犯人吃下的纸条一定是生,现在犯人可能死吗?

师:讲故事并随时问生

生:听故事并回答问题

3、师生一起欣赏生活中的数学

(1)地球每天 一定 都在转动

(2)太阳 不可能 从西边升起

(3)花可能 落在每个人手中

(4)谁在撒谎?母鸡一定能下蛋,公鸡不可能下蛋

(5)我上这辆公交车,会不会有座位呢? 可能

(五)课后小结

这节课你有哪些收获?

板书

可能性

可能 不可能 一定

#501579五年级下册数学的教案5

1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

2.引导学生学会判断一个数能否被3整除。

3.培养学生分析、判断、概括的能力。

理解并掌握3的倍数的特征。

1.学生口述2的倍数的特征,5的倍数的特征。

2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

324 153 345 2460 986 756

教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

板书课题:3的倍数的特征。

1.猜一猜:3的倍数有什么特征?

2.算一算:先找出10个3的倍数。

3×1=3 3×2=6 3×3=9

3×4=12 3×5=15 3×6=18

3×7=21 3×8=24 3×9=27

3×10=30……

观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

12→21 15→51 18→81 24→42 27→72

教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

(以四人为一小组、分组讨论,然后汇报)

汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

3.验证:下面各数,哪些数是3的倍数呢?

210 54 216 129 9231 9876

小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

4.比一比(一组笔算,另一组用规律计算)。

判断下面的数是不是3的倍数。

3402 5003 1272 2967

5.“做一做”,指导学生完成教材第10页“做一做”。

(1)下列数中3的倍数有 。

14 35 45 100 332 876 74 88

①要求学生说出是怎样判断的。

②3的倍数有什么特征?

(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

②接着再考虑什么?(最小三位数是100)

③最后考虑又是3的倍数。(120)

完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

同学们,通过今天的学习活动,你有什么收获和感想?

完成练习册中本课时练习。

3的倍数的特征

一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

#503894五年级下册数学的教案6

教学目标:

(1)通过观察操作,认识轴对称图形的特点,掌握轴对称图形的概念。

(2)能准确判断哪些事物是轴对称图形。

(3)能找出并画出轴对称图形的对称轴。

(4)通过实验,培养学生的抽象思维和空间想象能力。

(5)结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。

教学重点:

(1)认识轴对称图形的特点,建立轴对称图形的概念;

(2)准确判断生活中哪些事物是轴对称图形。

教学难点;

根据本班学生学习的实际情况,本节课教学的难点是找轴对称图形的对称轴。

教学过程:

一、认识对称物体

1、出示物体:今天秦老师给大家带来了一些物体,这是我们学校的同学参加数学竞赛获得的奖杯。这时一架轰炸战斗机。这是海狮顶球。

2、请同学们仔细观察这些物体,想一想它们的外形有什么共同的特点。(可能的回答:对称)

(但部分学生这时并不真正理解何为对称)

追问:对称?你是怎样理解对称的呢?

(可能的回答:两边是一样的)

像这样两边形状、大小都完全相同的物体,我们就说它是对称的。(板书:对称)像这样对称的物体,在我们的生活中你看到过吗?谁来说说看?

(可能正确的回答:蝴蝶、蜻蜓……)

(可能错误的回答:剪刀)

若有错误答案则如此处理。追问:剪刀是不是对称的?学生产生分歧,有说是,有说不是。剪刀两边不是完全一样的,所以它不对称。但是沿着轮廓把它画在纸上,是一个对称的。

二、认识对称图形

1、这些对称的物体,我们把它画在纸上,就得到这样一些平面图形。(出示图片)这些图形还是对称的吗?(是对称的)

同学们真聪明,一眼就能看出这些图形都是对称的。那么像这样的图形,我们就把它们叫做——(生齐说:对称图形)

(师在“对称”后接着板书:图形)

2、是不是所有的图形都是对称的?它们又是怎样对称的?我们又怎样证明它们是不是对称图形?这就是我们这节课要研究的问题。为了研究这些问题,老师还带来了一些平面图形,你们看——

(师在黑板上贴出图形)

边贴边说:汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽图形。

这些图形都是对称的吗?(不是)

3、你们能给它们分分类吗?(能)谁愿意上来分一分?

你准备怎么分类?(分成两类:一类是对称图形,一类是不对称图形)

问全班同学:你们同意吗?(同意)

你们怎么知道这些图形就是对称图形?有什么办法来证明吗?(对折)

好,我们用这个办法试一下。谁愿意上来折给大家看的?自己上来,选择一个喜欢的图形折给大家看。

4、图形对折后你发现了什么?谁先说?(可能的回答:对折后两边一样或对折后两边重叠)

你们所说的两边一样、两边重叠,也就是说对折后两边重合了。

(师板书:重合)(若有说出完全重合则板书:完全重合)

请将对折后的对称图形贴到黑板上,谢谢。

师指不对称图形。同学们刚才我们通过把这些对称图形对折,发现对折后两边重合了,现在再请几位同学上来折一折不对称图形,看看这次又有什么发现?还是自己上来。

折后你发现了什么?(可能的回答:没有重合、对折后两边不一样)它们有没有重合?一点点重合都没有吗?

(有一点重合)

拿一个对称图形和同学折过的不对称图形比较。这个图形对折后重合了,这个也重合了,那这两种重合有什么不一样吗?

(可能的回答:这个全部重合了,这个没有)

这些对称的图形对折后全部重合了,也就是完全重合了!

(师在“重合”前板书:完全)而不对称图形只是部分重合。

好,谢谢你们,请将图形放这(不对称图形下黑板)

大家的表现非常出色,奖励一下我们自己,来拍拍手吧!

“一——二——停!”我们的两只手掌现在是——

(生齐说:完全重合)

三、认识对称轴,对称轴的画法

同学们都很聪明,课前你们都准备了彩纸、剪刀,如果请你用这些材料创作一个对称图形,行吗?

1、请将你创作的对称图形,慢慢打开,问:你们发现了什么?

(中间有一条折痕)

大家把手中的对称图形举起来,看看是不是每个对称图形中间——都有一条折痕。这些折痕的左右两边——(生齐说:完全重合)。

这条折痕所在的直线,有它独有的名称叫做“对称轴”。

(在“对称图形”前板书:轴)

像这样的图形,我们就把它们叫做“轴对称图形”。

(师手指板书,边说边把“对折——完全重合——轴对称图形”连起来)

现在大家知道了这个图形是——轴对称图形。这个呢?这个呢?他们都是——轴对称图形。接下来请你看着自己创作的图形说说。

谁来说说,怎样的图形是轴对称图形?

可以上来拿一个轴对称图形说。请学生用自己的语言说。

2、师拿一张轴对称图形,随便折两下。

这是一个轴对称图形吗?是的。师随便折两下。

谁来说说这个轴对称图形的对称轴是那条?

(一条都不是。)为什么?

只有对折后两边完全重合的折痕才是对称轴。

请你来折出它的对称轴。通常我们用点划线表示对称轴。

师示范。请你在所创作的轴对称图形上用点划线表示出对称轴。

四、平面图形中的轴对称图形,及它们的对称轴各有几条。

1、对于轴对称图形,其实我们并不陌生,在我们认识的一些平面图形中应该就有一些是轴对称图形。我们先回忆一下学习过的平面图形有哪些?

(可能的回答:正方形、长方形、平行四边形、圆形、梯形、三角形等等)(教师板书,适当布局)

同学们说的是否正确呢?用什么办法来证明?( 对折 )如果它是轴对称图形,那它有几条对称轴呢?

好,那我们就拿出课前准备的平面图形,用对折的方法来证明,注意如果它有对称轴请你折出来。

结论出来了吗?现在你的判断和刚才还是一样的吗?

3、问:你想汇报什么?学生汇报。教师机动回答,回答语可有:

这位同学既能给出判断结果,又能说出判断的理由,非常好。

看来,仅靠经验、观察得出的结论有时并不准确,还需要动手实验进行验证。

能抓住轴对称图形的特征进行分析,不错!

也许一般的平行四边形不是轴对称图形,但有些特殊的平行四边形却是比如:长方形和正方形。以此类推……

圆有无数条对称轴。所有的圆都是轴对称图形。

讨论平行四边形、梯形、三角形时,我们既要考虑一般的图形,又要考虑特殊的图形。但是关于圆形,我们却无需考虑这么多,正如你所说的,所有的圆都是轴对称图形,不存在什么特殊的情况。看来,数学学习中,具体的问题还得具体对待。

(一般三角形、一般梯形、直角梯形、一般平行四边形不是轴对称图形,等腰三角形、等腰梯形、正三角形、长方形、正方形和圆都是轴对称图形)等腰梯形(1条),正五边形(5条),圆(无数条)

4、用测量的方法找对称轴。

刚才,大家都用对折的方法找出了他们的对称轴,但是如果老师请你在黑板面上找出对称轴呢?

大家都有一张长方形纸,假设它就是不能对折的黑板面,怎么画出它的对称轴?(我们可以用测量的方法,来找出对边的中点,连结中点。用同样的方法,我们可以画出另一条对称轴。

现在请同学们打开书本,画出书上长方形的对称轴。(小组内交流检查)

五、练习

1、学习了什么是轴对称图形,现在请在你身边的物体上找出三个轴对称图形。(瓷砖面、电视机柜、衣服、国旗?、凳面、桌面)

问:国旗是轴对称图形吗?

产生冲突。说明:不但要观察外形,还要观察里面的图案。

2、判断国旗是否是轴对称图形。

3、找阿拉伯数字中的轴对称图形

4、领略窗花的美丽,再从中找到创作的灵感,创作轴对称图形。教师可出示一些指导性图片。

选择一些贴到黑板上,最后出示“美”字。

总结:轴对称图形非常美丽,因此被广泛的运用于服装、家具、交通、商标等方面的设计中,希望大家能够运用今天的知识,把我们的教室、把你的家以后把我们的祖国装扮得更漂亮。

#503896五年级下册数学的教案7

教材分析

可能性是学习数学四个领域中“统计与概率”中的一部分,“统计与概率”中的统计初步知识学生在之前的学习已经涉及,但概率知识对于学生而言还是一个全新的概念,它是学生以后学习有关知识的基础。本单元主要教学内容是事件发生的不确定性和可能性,并能知道事件发生的可能性是有大小的。教学关键是如何让学生把对“随机现象”的丰富的感性认识升华到理性认识。

学情分析

五年级学生已经具备了一定的生活经验和统计知识,对现实生活中的确定现象和不确定现象已经有了初步的了解,并有一定的简单分析和判断能力,但学生只是初步的感知这种不确定事件,对具体的概念还没有深入地理解和运用。根据学生的年龄特点和生活经验,教师做出适当引导,学生就会进行正确的分析和判断的。所以教材选用学生熟悉的现实情境引入学习内容,设计了多种不同层次的、有趣的活动和游戏,激发了学生的学习兴趣,使其感受到数学就在自己的身边,体会数学学习与现实的联系,为学生自主探索、合作学习创造机会。

教学中,教师要利用这些情境让学生积极地参与到学习活动中,让学生在具体的操作活动中进行独立思考,使学生在大量观察、猜测、试验与交流的过程中,经历知识的形成过程,逐步丰富对不确定现象及可能性大小的体验。

教学目标

知识技能:使学生初步体验有些事件的发生是确定的,有些事件的发生是不确定的。能列出简单试验所有可能发生的结果,知道事件发生的可能性的大小。

数学思考:培养学生简单的逻辑推理、逆向思维和与人交流思考过程的能力。

问题解决:能由一些简单事件发生的可能性大小逆推比较事件多少。

情感态度:通过本单元的学习使学生感受到生活中处处有数学,并能够运用可能性的知识解决生活中的问题,逐渐对统计与可能性知识产生兴趣,培养学生学习数学的兴趣。

教学重点:会用“可能”“不可能”“一定”描述事件发生的可能性。能够列出简单试验中所有可能发生的结果,知道可能性是有大小的。

教学难点:能根据可能性的大小判断物体数量的多少。

课时安排:3课时

1.可能性………………………………2课时

2.掷一掷………………………………1课时

课 时 教 案

课题: 第四单元:可能性(1) 第 课时 总序第 个教案

课型: 新授 编写时间: 年 月 日 执行时间: 年 月 日

教学内容:教材P44例1及教材练习十一第1、2、3、4题。

教学目标:

知识与技能:学生初步体验有些事件发生是确定的,有些则是不确定的。

过程与方法:学生通过亲身体验,在观察、交流、动手、思考、验证的过程中探索新知。

情感、态度与价值观:培养学生的表达能力和逻辑推理能力。

教学重点:体验事件发生的等可能性。

教学难点:会用“可能”、“不可能”正确地描述事件发生的可能性。

教学方法:采用游戏教学法,将教学情境真实地搬到现实生活当中,让学生在游戏中,真实地参与中积累与学习知识。

教学准备:师:多媒体、抽签卡纸、盒子、彩色球、铅笔。生:棋子。

教学过程

一、情境引入

1.导入:今天老师给大家带来一个小小的礼物,猜一猜是什么?

让学生猜一猜,学生猜可能是文具,可能是玩具,可能是书….

2.师揭题:学生说的这些都是有可能发生的事情,在数学上都是些不确定性事件。这节课我们就来研究事件发生的可能性。(板书课题:可能性)

3.出示谜语:小黑人儿细又长,穿着木头花衣裳。画画写字它全会,就是不会把歌唱。 学生可能会说:铅笔。

师追问:确定吗?让学生肯定回答一定是铅笔或确定是铅笔。

4.出示奖品铅笔,并说明这是奖励表现秀的学生的,希望大家都能努力。

二、互动新授

1.引入:下周班会,老师想组织大家表演节目,每个人都有机会表演。但节目形式不能重复,每个类型只能有一个节目,大家讨论一下,我们应该怎样确定每一个同学演什么节目呢?

组织小组讨论,大部分同学会想到用抽签的方法来决定。

2.活动:出示三张卡片,上面分别写上唱歌、跳舞、朗诵,找同学上来抽一张,引导学生先思考一下,会抽到什么?

学生会想到:可能是唱歌,可能是跳舞,也可能是朗诵。这三种情况都有可能。

师小结:每位同学表演节目类型是一件不确定的事件,有三种可能的结果。

3.抽签指生抽一张。(以抽到跳舞为例)

师引导:如果再找一名同学来抽签,可能会抽到什么?

生可能回答:可能是唱歌,也可能是朗诵。

引导学生质疑:有没有可能会抽到跳舞?

指生回答:不可能,因为剩的两张签里没有跳舞。

找生抽一张,验证学生的猜测是否正确。

(以学生抽到的是朗诵为例)

4.引导:最后只剩一张了,你们能猜一猜这一张可能是什么吗?

生可能会回答:一定是朗诵,因为只剩下朗诵这张卡片了。

5.师小结:刚才在猜测会抽到什么节目时,第一次同学们用的词是“可能”,第二次同学们用的词是“不可能”,第三次用的是“一定”。一般事情的发生都有“可能”“不可能”“一定”三种情况,当然,不同情况下,它们有时也会发生变化。(板书:可能 不可能 一定)

三、巩固拓展

1.完成教材第45页“做一做”。

出示:两个盒子,一号盒子放的全部是红棋子,二号盒子放的有红棋子和绿棋子。

引导学生先说一说,哪个盒子里一定能摸出红棋子?哪个盒子里可能会摸出绿棋子?哪个盒子里不可能摸出绿棋子?等问题。

让学生在小组内组织摸一摸活动,并验证,再集体汇报。

2.完成教材第47页“练习十一”第1题。

让学生说一说,并说明理由。

3.完成教材第47页“练习十一”第2题。

先让学生自主连一连,教师发彩色球让学生验证摸一摸,再说一说为什么这么连。

4.说一说:教师引导学生用“一定”“可能”“不可能”等词语说说自己生活中一些事件发生的可能性。

四、课堂小结

师:这节课你们学了什么知识?有什么收获?

引导归纳:

1.判断事件发生的可能性的几种情况:可能、不可能、一定。

2.能结合实际情况对一些事件进行判断。其中“不可能”和“一定”是能够在完全确定的情况下做出的判断,而“可能”是在不能确定的情况下做出的判断,它通常包含经常、偶尔两种情况。

作业:教材练习第47页第3、4题。

板书设计:

可能性(1)

可能(不能确定)

可能性 不可能

(完全确定)

一定

课题: 第四单元:可能性(2) 第 课时 总序第 个教案

课型: 新授 编写时间: 年 月 日 执行时间: 年 月 日

教学内容:教材P45~46例2、例3及练习十一第5、8题。

教学目标:

知识与技能:让学生知道事件发生的可能性是有大小的。

过程与方法:进一步学习比较多种结果事件可能性的大小方法:先得出结果总数,再看哪种结果在总数占的比例多。

情感、态度与价值观:培养学生的动手操作、归纳和判断能力。

教学重点:会比较两种结果事件的可能性大小。

教学难点:能根据可能性的大小逆向思考比较事件数量的多少。

教学方法:游戏教学法;自主探索、合作交流。

教学准备:多媒体、盒子、彩色棋子。

教学过程

一、复习引入

1.出示:(1)用合适的语言描述下面事件发生的可能性。

①太阳( )从东边落下。②明天( )考试。

③冬天( )会下雪。 ④掷一枚硬币( )正面朝上。

(2)盒子里有3个红棋子和1个黄棋子,任意摸一个可能是什么颜色的棋子?为什么?引导学生说出,可能是红棋子也可能是黄棋子。因为盒子里面既有红色棋子也有黄色棋子。

质疑:你觉得摸到哪种颜色的棋子最有可能呢?为什么?

引导学生思考,在小组内交流讨论。学生可能会说,红色棋子摸到最有可能,因为盒子里红棋子比黄棋子多。

2.导出课题:看来事件发生的可能性是有大有小的。今天这节课咱们就来研究事件发生的可能性的大小。(板书课题:可能性的大小)

二、互动新授

1.体验可能性有大有小。

出示教材第45页例2情境图。

(1)引导:在盒子里有红色和蓝色两种棋子,任意摸出一个棋子,可能是什么颜色?(可能是红色,也可能是蓝色。)

(2)(继续出示情境图做实验部分)有一个小组做了一次实验,他们摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次,同学们观察他们摸完20次后的结果是怎样的?(摸出红色的多,蓝色的少。)

(3)追问:这说明了什么?

(摸到红棋子的可能性比较大,蓝棋子的可能性小。)

(4)质疑:假如再摸一次的话,摸出哪种颜色棋子的可能性大?(红色),那是不是一定能摸到红色呢?

(不一定,因为蓝色摸到的可能性虽小也有可能会摸到。)

2.动手操作。

(1)每个小组都有一个盒子,里面都装有红色和蓝色两种棋子,请小组仿照教材的实验,自己摸一摸,并由小组长记录结果。

小组操作结束后,汇报记录结果,并根据结果说一说你盒子里哪种颜色的棋子多。并追问:每个小组的统计结果都一样吗?

指名小组汇报,对不同结果的小组进行比较。

(2)引导学生思考:通过刚才的操作,你发现可能性的大小与什么有关?

引导学生小结:与在总数中所占数量的多少有关,在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。(板书)

(3)让学生举出生活中的例子:如抽奖、买彩票等。并由此对学生进行正确的思想教育。

3.出示教材第46页例3。

(1)先让学生观察出示的记录结果,再指名回答例题中的问题。

(从试验记录可以看出,一组摸了20次,摸出黄球5次,摸出红球15次,摸出黄球的次数少于红球的次数。另一组摸了20次,摸出黄球 4次,摸出红球16次,摸出黄球的次数少于摸出红球的次数。

八个小组一共摸到红球123次,摸到黄球37次,摸到红球的次数比摸到黄球的次数多。也就是说,从盒子里摸出红球的可能性大在,黄球的可能性小。因此,我们可以判断出:盒子里红球多,黄球少)

(2)引导小结方法:当可能性的大小与数量相关时,在总数中所占数量越多,可能性越大,所占数量越少,可能性就越小。

三、巩固拓展

1.完成教材第45页“做一做”。

先让学生自主思考,小组交流,再汇报。并说出为什么这么想。

引导学生总结:在总数中占的颜色多的可能性大,占的颜色少的可能性小。可以进一步渗透“公平”的思想与画法。

2.完成教材第46页“做一做”第1题。

先让学生观察从图中能得到的信息,再说一说。

(盒子里红色的棋子多,黄色的棋子少)

引导学生运用可能性大小的逆向思考:从可能性的大小可以推想数量的多少吗?(让学生动手操作,小组合作,并记录结果。)

四、拓展小结

师:这节课你们学了什么知识?有什么收获?

引导归纳:1.事件发生的可能性有大有小。2.在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。3.摸到的可能性大的说明在总数中占的数量多,摸到的可能性小的说明在总数中占的数量少。

作业:教材练习第47~48页练习十一第5、8题。

板书设计:

可能性(2)

大←→数量多

可能性

小←→数量少

#503893五年级下册数学的教案8

教学目标:

1.通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。

2.欣赏美丽的对称图形,并能自身设计图案。

3.同学感受图形的美,进而培养同学的空间想象能力和审美意识。

重点难点:

1.能利用对称、平移、旋转等方法绘制精美的图案。

2.感受图形的内在美,培养同学的审美情趣。

教学准备:幻灯片、课件。

教学过程

一、情境导入

利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。

二、学习新课

(一)图案欣赏:

1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?

2、让同学尽情发表自身的感受。

(二)说一说:

1、上面每幅图的图案是由哪个图形平移或旋转得到的?

2.上面哪幅图是对称的?先让同学边观察讨论,再进行交流。

三、巩固练习

(一)反馈练习:

完成第8页3题。

1、这个图案我们应该怎样画?

2、仔细观察这几个图案是由哪个图形经过什么变换得到的?

(二)拓展练习:

1、分别利用对称、平移和旋转创作一个图案。

2、 交流并欣赏。说一说好在哪里?

四、全课总结

对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。

五、安排作业:

教材第9页第5题。

板书设计:

欣赏和设计

图案1 图案2

图案3 图案4

对称、平移和旋转知识有广泛的应用。

#20_73五年级下册数学的教案9

教学内容: 人教版小学五年级数学质数和合数

教学目标: 1.理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数 的个数进行分类.

2.培养学生细心观察全面概括.准确判断.自主探索、独立思考、合作交流的能力。

教学重点: 能准确判断一个数是质数还是合数.

教学难点: 找出100以内的质数.

教学过程:

一、复习导入(加深前面知识的理解,为新知作铺垫)

下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数.

3和15 4和24 49和7 91和13

指名回答。

二、小组合作学习质数和合数的的概念。

全班分两组探讨并写出1~20各数的因数。

1、观察各数因数的个数的特点。

2、板前填写师出示的表格。

只有一个因数

只有1和它本身两个因数

除了1和它本身还有别的因数

3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。(板书:质数和合数)

4、举例。

你能举一些质数的例子吗?

你能举一些合数的例子吗?

练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?

5。探究“1”是质数还是合数。

刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)

引导学生明确:1既不是质数也不是合数。

练习:自然数中除了质数就是合数吗?

三、给自然数分类。

1、想一想

师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把非零自然数分为哪几类?

生:质数,合数,1。

2、说一说。

既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?

引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。

四、师生学习教材24页的例1。

老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。

1、师引导学生找出30以内的质数。

提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1,)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)

(特殊记忆20以内的质数,因为它常用。)

2。小组探究100以内的质数。

3。汇报100以内的质数。师生共同整理100以内的质数表。

4。应用100以内质数表:

练习:(1)有的奇数都是质数吗?(2)所有的偶数都是合数吗?

五、思维训练。

有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。

六、课堂小结。

这节课你学会了什么?(质数和合数)什么叫质数?(一个数只有1和它本身两个因数,这样的数叫做质数)什么叫合数?(一个数除了1和它本身外还有别的因数的,这样的数叫做合数。)你会判断质数和合数吗?判断的关键是什么?(看这个数因数的个数。)

反思:在设计质数与合数这一节课时,我用“细心观察、全面概括、准确判断”这一主线贯穿全课。并在每个新知的后面都设计了一个小练习。以便及时巩固和加深对新知的理解和记忆。最后的思维训练,是给本节课学得很好的学生一个思维的提升。小结又针对全班学生做了新知的概括。

在学生找20以内各数的因数时,我应该注重探索,体现自主。就是放手让学生自己想办法以最短的时间找出各数因数,并在我的引导下按因数的个数给各数分类,最终得出质数和合数的概念。在以后的学习中我应当多多提倡自主探索性学习,注重“学习过程”,而不是急于看到结果。让学生成为自主自动的思想家,在学习新知识时根据已积累的知识经验有所选择、判断、解释、运用,从而有所发现、有所创造。

#20_74五年级下册数学的教案10

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养学生自主探索、独立思考、合作交流的能力。

3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

教学重点:

1、理解掌握质数、合数的概念。

2、初步学会准确判断一个数是质数还是合数。

教学难点:区分奇数、质数、偶数、合数。

教学过程:

一、探究发现,总结概念:

1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?

学生独立思考,然后全班交流。

2、师:这样的四个小正方形能拼出几个不同的长方形?

学生各自独立思考,想像后举手回答。

3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?

师:我看到许多同学不用画就已经知道了。(指名说一说)

4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?

学生几乎是异口同声地说:会越多。

师:确定吗?(引导学生展开讨论。)

5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种? 什么情况下拼得的长方形不止一种?并举例说明。

先让学生小组讨论,然后全班交流,师根据学生的回答板书。

师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?

学生独立思考后,在小组内进行交流,然后再全班交流。

引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)

6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。

7、师:那你们认为“1”是什么数?

让学生独立思考,后展开讨论。

二、动手操作,制质数表。

1、师出示:73。让学生思考着它是不是质数。

师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)

师:这表从哪来呢?

(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)

2、让学生动手制作质数表。

3、集体交流方法。

三、练习巩固:

完成练习四第1、2题。

四、课题小结:

这节课你在激烈的讨论中有什么收获?

数学教案

推荐阅读:

  倾城之恋500字读后感

  劳动合同样板完整

  幼儿园亲子联欢会教师发言

  企业租房合同精选

  初一下学期数学教案

  2024事业单位工作总结

AD位1

相关推荐

AD位2

热门图文

AD3